
COIS 3020 - Data Structures & Algorithms III

Assignment 3: Ternary Trees & Lazy Binomial Heaps

8th April 2022

Group Members:
Binh Nguyen (0710969)

Sruthi Sugumaran (0690271)
Marc Touma (0674382)

Brandon Van Baah (0658848)





Table of Contents

Part 1 - Ternary Tree Implementation 3

Test Case 1.1 - “Remove” 3

Scenario 1: Remove a word from an empty ternary tree 3

Scenario 2: Remove a word from the tree when size = 1; 3

Scenario 3: Removing a word from the tree when size > 1 4

Scenario 4: Removing a word whose last character is not a leaf 5

Scenario 5: Removing a word whose characters have middle, low and high nodes 6

Scenario 6: Removing a word whose characters does not have low and high nodes 7

Scenario 7: Removing a word that does not exist in the ternary tree 8

Part 2 - Lazy Binomial Heaps 9



Part 1 - Ternary Tree Implementation

Note: Remove test cases include the print output of the printTree method as well.

Test Case 1.1 - “Remove”

Scenario 1: Remove a word from an empty ternary tree

Input Trie<int> T = new Trie<int>();
Console.WriteLine($"Remove status: {T.Remove("Hi")}");

Expected Output Remove status: False

Actual Output

Status Success

Scenario 2: Remove a word from the tree when size = 1;

Input T.Insert("I", 10);
Console.WriteLine($"\nRemove status: {T.Remove("I")}");

Expected Output Remove status: True

Actual Output

Status Success



Scenario 3: Removing a word from the tree when size > 1

Input Console.WriteLine($"\nRemove status: {T.Remove("beet")}");

Expected Output Remove status: True

Actual Output

Status Success



Scenario 4: Removing a word whose last character is not a leaf

Input Console.WriteLine($"\nRemove status: {T.Remove("bag")}");

Expected Output Remove status: True

Actual Output

Status Success



Scenario 5: Removing a word whose characters have middle, low and
high nodes

Input Console.WriteLine($"\nRemove status: {T.Remove("bagel")}");

Expected Output Remove status: True

Actual Output

Status Success



Scenario 6: Removing a word whose characters does not have low and
high nodes

Input Console.WriteLine($"\nRemove status: {T.Remove("abc")}");

Expected Output Remove status: True

Actual Output

Status Success



Scenario 7: Removing a word that does not exist in the ternary tree

Input Console.WriteLine($"\nRemove status: {T.Remove("bagel")}");

Expected Output Remove status: False

Actual Output

Status Success



Part 2 - Lazy Binomial Heaps
Console.WriteLine("Tree of degree {0}: 0!",i);
[Test Case 1] or “”
Description:

Scenario1: Try removing from an empty heap

Input BH.Remove()

Expected Output error

Actual Output

Status True

Scenario 2: create a heap, and insert 20 numbers

Input for (i = 0; i < 20; i++)
{

BH.Add(new PriorityClass(r.Next(50), (char)('a')));
}

Expected Output the first array contains the Binomial Trees of degree 0 of all the inserted numbers



Actual Output

Status True

Scenario 3: Remove 1 item from the heap and check that front changes

Input BH.Remove();

Expected Output The heap has been coalesced, 46 has been removed, and front has been
updated



Actual Output

Status True

Scenario 4: Add 2 items. Print out the heap. Test Front()

Input BH.Add(new PriorityClass(7, (char)('a')));
BH.Add(new PriorityClass(9, (char)('a')));
BH.Print();

Expected Output the first array contains the Binomial Trees of degree 0 of all the
inserted numbers



Actual Output

Status

Scenario 5: Remove 1 item. Print out heap. Test Front()

Input BH.Remove();
BH.Print();

Expected Output The heap has been coalesced, the node containing 41 has been
removed, and Front has been updated



Actual Output

Status True


